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Abstract

Rift Valley Fever and malaria are zoonotic and human diseases respectively that pose major production
and health challenges to pastoralists. This study aimed to determine the spatiotemporal distribution of
mosquito vectors of these two diseases in Baringo County, Kenya. A longitudinal study design was used
to collect mosquitoes from twenty four sites. Rainfall seasonality was determined using rainfall data from
the WorldClim database. Negative binomial and zero-inflated negative binomial regression models were
used to determine the effect of rainfall seasonality and ecogeographical conditions on vector distribution.
Spatio-temporal maps showing vector distribution were made using the sf package in R. Four Rift Valley
Fever vector species and four malaria vector species were collected and were predominantly found in the
lowland and riverine zones. Vector control interventions against the two diseases should therefore target
these two zones. The study also recommends integrated vector management methods targeting both
larval and adult stages.

Keywords: Malaria, mosquitoes, rainfall seasonality, Rift Valley Fever, spatiotemporal distribution,
vector control

Introduction
Rift Valley fever (RVF) and malaria are vector-borne diseases caused by the Rift Valley fever
virus (RVFV) (Bunyaviridae: Phlebovirus) and Plasmodium parasite respectively ™ 2. Four
Plasmodium species are known to cause malaria in humans, namely Plasmodium falciparum,
P ovale, P malariae, and P vivax with P. falciparum and P. vivax being responsible for most
malaria cases 2.
RVF poses a threat to human and animal health and drastically reduces animal production. In
animals, it causes high mortality in new-borns and mass abortion in pregnant animals causing
massive economic losses > 3. RVF was initially described in Kenya in 1930 and recurrent
RVF epizootics have since been reported in countries in eastern and southern Africa, West
Africa, North Africa, Madagascar, Mayotte, Comoros Islands, Saudi Arabia, and Yemen [,
The first RVF outbreak occurred in Baringo County between October 2006 and March 2007
and caused human and animal mortalities leading to massive economic losses [ 5 61,
Despite the massive resource investment towards the control of malaria, the disease still affects
millions of people in the world causing death and morbidity, especially in sub-Saharan Africa.
In the year 2018, there were 228 million malaria cases reported worldwide, with mortality of
405,000. Africa carried the majority of the global malaria burden with 93% of the global
malaria cases and 94% of the global deaths [l. In Kenya, malaria is among the leading causes
of morbidity with approximately 3.5 million new clinical cases and 10,700 deaths each year (1.
Approximately 70% of the Kenyan population is at risk of malaria which accounts for 19% of
outpatient consultations [l Baringo County lies in the seasonal malaria transmission
epidemiological zone that experiences short periods of intense malaria transmission during the
rainy season with a malaria prevalence of between 1-5% [,
Studies have reported relationships between climatic factors and RVF and malaria outbreaks
stemming from the effect of climatic factors on the development of mosquito vectors. RVF
epidemics are linked to floods that follow heavy rainfall in the wet seasons which leads to the
hatching of RVFV infected Aedes mosquitoes that primarily transmit the virus to livestock [,
~3gn
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Peaks in malaria transmission are linked to seasonal changes
in rainfall and temperature that affect the emergence of
malaria vectors. An increase in malaria incidence with time
lags of between 2 to 4 months after the onset of rainfall and 0
to 1 months after an increase in temperature has been reported
[11. 12 Temperature influences mosquito development and the
rate of sporogenic development of P. falciparum in
mosquitoes 131, The spatio-temporal variation in climatic
factors that regulate vector and parasite development does
therefore result in a variation of vector abundance and disease
transmission dynamics.

Although vector control is highly effective in preventing
vector-borne disease transmission, the full potential of its
benefits is yet to be realised in eradication of diseases.
Compared to drugs and vaccines, vector control has greatly
contributed to eradication of some vector-borne diseases, for
example the use of sterile insect technique against tsetse flies
in Zanzibar [*4l. RVF control is still plagued with challenges,
vector control is difficult to implement and vaccines are only
available for animals [*5 61 Malaria control emphasis has
been placed on infection management using artemisinin-based
combination therapies [ and vector control using long-life
insecticide-treated nets (LLITNSs), indoor residual spraying
(IRS), and larval source management (LSM) [17- 181, However,
the emergence of artemisinin resistance and insecticide
resistance in plasmodium and mosquito populations is of
concern to malaria control (2],

Vector control is now focused on integrated vector
management (I\VM) which provides a conceptual framework
for the deployment of cost-effective and sustainable methods
of vector control. VM allows for full consideration of the
complex determinants of disease transmission, local disease
ecology, anthropogenic risk factors and the socioeconomic
status of affected communities 2. Comprehensive knowledge
of vector biology, vector parasite interaction and
spatiotemporal distribution of both vector and pathogen are
key to improving IVM approaches for vector control and
disease eradication [0 221,

The aim of this study was to determine the spatiotemporal
distribution of RVF and malaria vectors, specifically, the
seasonal variation in the distribution of mosquito vectors
across different ecogeographical zones. Results of the study
are presented with an inference on the benefits of a
transdisciplinary approach towards the concerted control of
RVF and malaria vectors in identified transmission foci. The
benefits of such an approach include cost-effectiveness, a
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reduction of vector population densities and reduced
transmission and infection rates leading to a healthy
population and increased animal productivity.

Materials and Methods

The study area

The study was carried out in Baringo County, Kenya, which
lies between longitudes 35.5968° E and 36.2338° E, and
latitudes 0.1218° N and 0.8558° N. It is part of the semi-arid
zones of Kenya and is inhabited by resource-poor pastoralist
communities. The area has poor infrastructure and
experiences a harsh climate characterized by low rainfall and
high temperatures (Ojwang, Agatsiva and Situma, 2010). This
area is prone to VBDs like malaria, RVF, leishmaniasis, and
yellow fever. which not only cause morbidity and mortality in
humans but in the case of zoonoses also cause animal deaths
leading to serious economic losses.

The study area was divided into four zones based on
hydrology, altitude, vegetation cover, soil types and
precipitation The four zones from east to west were a low-
altitude zone surrounding the permanent water bodies with an
altitude of below 1,000 m above mean sea level, a mid-
altitude zone with an altitude of between 1,000 - 1,500 m
above mean sea level, a highland zone with an altitude
between 1,500 - 2,300 m above mean sea level and a riverine
zone bordering the Kerio River with an altitude of 1,100 -
1,200 m above mean sea level.

The permanent water bodies in the lowland zone are Lake
Baringo, Lake 94, and Lake Bogoria. This area receives an
annual rainfall of about 600 mm and has a slope of less than
4% with poorly drained soils, making it prone to seasonal
flooding. The main vegetation cover is the invasive Prosopis
juliflora locally known as the mathenge tree.

The mid-altitude area is interspaced with dry riverbeds (lagas)
that flow only after the heavy seasonal rains in the Tugen
Hills. The slope here is between 20 and 30% and the main
vegetation cover is Acacia and Commiphora bushes.

The highland area comprises of the Tugen Hills. This area has
very well-drained soils that support indigenous forests as well
as planted exotic forests that grow on the generally steep
terrain that has a slope range of 30-40%. Rainfall ranges
between 1,000 and 1,500 mm per annum.

The riverine zone borders the Kerio River and has several
oxbow lakes, the prominent one being Lake Kamnarok. This
zone is prone to flooding because the elevation of the slope is
less than 6%.
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Fig 1: Map of the study area. (1a) Location of Baringo County within Kenya, (1b) the sub-county administrative units within Baringo County
with the study area shaded out green, and (1c) the ecological zones within the study area, sampling sites and the 2006-2007 RVF outbreak
points.

Research design and sampling procedure

Mosquitoes were sampled based on a longitudinal study
design where mosquito samples were collected monthly from
24 randomly selected sites within the study area (six sites per
zone). Purposive sampling technique was used to identify
mosquito sampling points. The random points tool in
Quantum GIS software (Quantum GIS Development Team,
2016) was used to generate 100 random points. These points
were converted to a Keyhole Markup Language file (. KML)
and exported into Google Earth to help in the identification of
points that were close to water bodies and easily accessible by
road. Six sites situated near water bodies like lakes, springs,
rivers, pan dams, and irrigation canals were chosen in each of
the four zones making a total of 24 sampling sites (Figure 1c).
Monthly sampling expeditions were conducted during which
adult mosquitoes were collected from the 24 sites. The spatial
coordinates of all sampling points were recorded to enable
spatial analysis.

Adult mosquitoes were collected between June 2015 and
April 2016 Adult collections were done indoors and outdoors.
Indoor sampling was done from houses near the breeding sites
using pyrethrum spray catches made up of 10 ml pyrethrin
dissolved in 5 litres of kerosene. Spraying was done in the
morning between 06:00 and 08:00 h. White sheets were
spread inside the house before spraying. Ten minutes after
spraying, dead and immobilized mosquitoes were collected
from the sheets. Outdoor collections were done using CDC
light traps that were set overnight, between 18:00 and 06:00 h.
The collected mosquitoes were brought back to the field
laboratory for identification using dichotomous taxonomic
keys (23). After identification, known RVF and malaria
vectors were grouped into two categories either as RVF or
malaria vectors. Collections from each month were then
grouped as having been collected from the rainy season or the
dry season.

40

Determining climate seasonality

Climate seasonality was determined using rainfall data of the
study area between January 2015 and December 2016
obtained from the WorldClim database 4. This dataset
contains historical climate data from 1969 to 2018 available
as raster files and has three variables namely minimum
temperature  (°C), maximum temperature (°C) and
precipitation (mm). The geographical coordinates of the
sampling points were used to extract point data from the raster
files. Spatial averages were then determined by points data
across each ecogeographical zone to produce a 24-month time
series of rainfall data. Monthly anomalies of the time series
were calculated by subtracting the monthly rainfall values
from the 24-month average. Months with a positive anomaly
were classified as belonging to the rainy season, while those
that had a negative anomaly value were determined as
belonging to the dry season.

Data analysis

Distribution of mosquitoes across zones

For each category of vectors, a GTest was performed using
the R statistical package to test the null hypothesis that the
distribution of individual vector species across the four
ecogeographical zones was the same.

Testing spatio-temporal variation in the abundance of
RVF and malaria vectors

To choose the best model for analysing the spatiotemporal
variation of vectors exploratory data analysis was done to
determine the distribution of the data and the presence of
overdispersion. The distribution of the data was determined
by plotting histograms for both the RVF and malaria datasets.
Overdispersion was tested using the dispersiontest function of
the AER library in R.

To test the seasonal distribution of the vectors across the eco-
geographic zones, negative binomial (NB) regression and
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zero-inflated negative binomial (ZINB) regression analyses
were used. The ZINB model is a two-part model that uses a
negative binomial regression and a logistic regression.
Through the negative binomial part, the ZINB can test the
effect of the predictors on the frequency of the vectors while
the logistic part can test the effect of the predictors on the
presence or absence of the vectors. The predictor variables
used in the models were ecogeographic zones and season of
vector collection. Ecogeographic zones had four levels while
season had two levels. Between them, the regressors
accounted for environmental and climatic factors associated
with vector ecology. The Vuong test function in the pscl
package of R was used to compare the performance of a
negative binomial (NB) regression model to a zero-inflated
negative binomial (ZINB) regression model.

Spatio-temporal maps showing the distribution of RVF and
malaria vectors were developed using the sf package in R.
The study performed GTest to determine if there was a
difference in the spatiotemporal distribution of RVF and
malaria vectors across zones and seasons. The null hypothesis
tested was that the distribution of RVF and malaria vector
species across the four ecogeographical zones was the same.

http://www.dipterajournal.com

Choropleths depicting the seasonal distribution of RVF and
malaria vector were developed using vector counts scaled to
natural Jenk breaks implemented by Fisher-Jenks algorithm in
R.

Ethical statement

The study acquired both national and the World Health
Organization (WHO) ethical clearance  referenced
P70/02/2013 and Protocol ID B20278 respectively. Consent
was sought from the house owners before the spraying
exercises commenced.

Results

Climate seasonality

Rainfall in the study area was trimodal. The rainy months
spanned from April to May, July — August and November —
December, while the dry months were January — March, June,
and September —October (Figure 2). For regression analyses,
mosquito samples collected during the dry months were
classified as collected in the dry season and those collected
during the rainy months were classified as collected in the
rainy season.

80-

40-
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-40- I |
Jan  Feb  Mar
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Apr  May Jun  Jul

Rainfall Anomalies

Time (months)

Ecogeographic Zone
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Fig 2: Rainfall anomalies in the eco-geographical zones. Months with negative anomalies received less than the annual average rainfall while
those with positive rainfall anomalies received more than the average annual rainfall.

Collected mosquitoes

A total of 12,186 adult mosquitoes were collected from the
study area. The identified mosquitoes belonged to 35 species
from 9 genera. Collected RVF vectors included Culex pipiens
s.l. (3,985 adults), Culex univitattus (278 adults), Mansonia
africana (397 adults), and Mansonia uniformis (543 adults).
Cx. pipiens s.l. was collected from 19 sites, Cx. univitattus
from 16 sites, Ma. africana from 14 sites and Ma. uniformis
from 17 sites. Collected malaria vectors included Anopheles
gambiae (5410), Anopheles pharoensis (283), Anopheles
coustani (325) and Anopheles funestus (69 adults) which
transmit malaria. The distribution of the vectors across the
eco-geographical zones is given in Table 1. GTests for equal
distribution of RVF and malaria vectors across the eco-
geographical zones showed that the vectors were not equally
distributed (G = 644.39, X-squared df = 9, p-value < 0.001
and G 235.41, X-squared df 9, p-value < 0.001
respectively.)
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Table 1: The spatial distribution of RVF and malaria vectors across
eco-geographical zones in the study area.

. Mid- . - Disease
Species Lowland altitude Highland |Riverine transmitted

Culex pipiens s.I. 3652 197 197 132 RVF
Culex univitattus 164 5 5 107 RVF
Mansonia africana 297 2 2 95 RVF
Mansonia uniformis 359 39 39 137 RVF

An. coustani 296 7 0 22 Malaria

An. funestus 12 0 0 57 Malaria

An. gambiae 4292 40 25 1053 Malaria

An. pharoensis 269 0 0 14 Malaria

Regression analysis of the vector count data

Histograms of the frequency distribution of RVF and malaria
data collected from the study showed the data was zero-
inflated and right-skewed, and could not be analysed by
methods that assume normality of data. This is depicted by
bar plots plotted using natural Jenk breaks as bins for the
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count categories (Figure 3). The data was also overdispersed
as the variances were significantly greater than the means for
RVF data (z = 2.7216, p-value = 0.003248, overdispersion

http://www.dipterajournal.com

estimate = 63.41), and malaria data (z
0.00368, overdispersion estimate = 181.242).

2.68, p-value

Malaria Vectors' Frequency Distribution

Frequency
60 80 100

40
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Fig 3: Frequency distribution plots malaria and RVF vectors. Exploratory data analysis revealed that the vector frequency distribution was zero-
inflated.

Reggression models for RVF vectors

The NB model for the RVF data showed that the lowland and
midaltitude zones, and the rainy season had significant
coefficients, and therefore, significantly influenced the
distribution of the RVF vectors (Table 2). The highland zone
and the dry season served as the reference groups. The
incident rate ratios for the occurrence of RVF vectors were
obtained by exponentiating the coefficients obtained from the
NB model. The incident rate ratio for the occurrence of RVF
vectors in the lowland zone was 5.3 times more (p = 0.001)

than in the highland zone and 0.07 times more in the midland
zone compared to the highland zone (p < 0.0001). RVF vector
occurrence was 2776 times more (exp 7.2929) in the rainy
season compared to the dry season (p = 0.023).

The ZINB model predicted significant effects for lowland and
midland zones but with different coefficients. However, the
effect of the rainy season was not significant for this model
(Table 2). The coefficients of the binomial component of the
ZINB model were all non-significant.

Table 2: Regression coefficients for the three regression models performed to test the effect of ecogeographic zones and seasons on the
distribution of RVF vectors. The levels of significance are indicated by asterisks where ‘***’ = p-value < 0.0001 and ‘** = p-value <0.05.

Coefficients NB Model ZINB Model: Count model coefficients (negbin with log link)
Estimate Pr(>|z]) Estimate Pr(>|z])
(Intercept) 1.647 3.05e-05 *** 1.971 3.81e-06 ***
Zone-lowland 1.613 0.001 *** 1.894 0.0001 ***
Zone-mid-altitude -2.633 2.05e-06 *** -2.757 2.34e-07 ***
Zone-riverine 0.642 0.178 0.449 0.299
Season-rainy 7.929 0.023 * 0.45 0.233
log(theta) -6.725 1.76e-11 ***
ZINB Model: Zero-inflation model coefficients (binomial with logit link):
(intercept) Estimate Pr(>z|)
-1.52 0.298
zonelowland 1.344 0.384
zonemid-altitude -17.248 0.999
zoneriverine -11.389 0.984
seasonrainy -11.708 0.985

Regression models for malaria vectors

The NB model for malaria vectors showed that the lowland
and riverine zones, and the rainy season had significant
coefficients, and therefore, significantly influenced the
distribution of malaria vectors (Table 3). The highland zone
and the dry season served as the reference groups. Incident
rate ratios for the occurrence of malaria vectors were
determined by exponentiating the coefficients obtained from
the NB model. The incident rate ratio for the occurrence of
malaria vectors in the lowland zone was 144 times more (exp
4.972) than in the highland zone (p < 0.0001) and 36 times

4

more (exp 3.588) in the riverine zone compared to the
highland zone (p < 0.0001). The effect of seasonality on the
occurrence of malaria vectors was not significant.

The coefficients of the binomial part of the ZINB models for
both RVF and malaria vectors were all non-significant
indicating that the logistic part of the models did not
successfully predict the absence of the vectors; the zeroes in
the data sets were not due to non-existence of the vectors in
the sampling points suggesting that they could have simply
been missed in the sampling effort.
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Table 3: Regression coefficients for the three regression models performed to test the effect of ecogeographic zones and seasons on the
distribution of malaria vectors. The levels of significance are indicated by asterisks where “***’ = p-value < 0.0001 and “*’ = p-value <0.05.

Coefficients: NB Model ZINB Model: Count model coefficients (negbin with log link)
Estimate Pr(>z]) Estimate Pr(>|z|)
(Intercept) -0.258 0.58 0.476 0.495
zonelowland 4.972 < 2e-16*** 4.405 2.85e-07***
zonemid-altitude 0.612 0.297 -0.096 0.908
zoneriverine 3.588 6.01e-11*** 2.983 0.0003***
seasonrainy 0.243 0.518 0.164 0.712
Log(theta) -1.222 1.71e-09%**
Zero-inflation model coefficients (binomial with logit link):
Estimate Pr(>|z)
(Intercept) 0670 0495
zonelowland -2.386 0.085
zonemid-altitude -11.298 0.968
zoneriverine -2.581 0.131
seasonrainy -1.266 0.327
A comparison of the performance of the NB model (model 1) than the ZINB model (Table 4), the spatiotemporal

to the ZINB model (model 2) regression for both RVF and
malaria vectors showed that the NB model performed better

distribution of the evectors is better explained using the NB
model.

Table 4: Vuong Non-Nested Hypothesis Test-Statistic: Test-statistic is asymptotically distributed N(0,1) under the null that the models are
indistinguishable.

Vector Category Vuong Test z-statistic Alternate hypothesis p-value
RVF Raw -1.435 model2 > modell 0.076
BIC-corrected 2.597 modell > model2 <0.001
Malaria Raw -1.075 Model 2 > Model 1 0.14
BIC-corrected 6.062 Model 1 > Model 2 <0.001

For both RVF and malaria models, the raw test shows that the
ZINB model does not perform better than the NB model (p >
0.05). This conclusion is supported by the BIC-corrected
model which shows the NB model performs better than the
ZINB model (p < 0.05).

Spatiotemporal Risk Maps of RVF and Malaria Vectors
Vectors of the two diseases were more abundant in the rainy
season compared to the dry season (G = 499.38, X-squared df

= 3, p-value < 0.0001 for RVF and G = 351.27, X-squared df
=3, p-value < 0.0001 for malaria).

The abundance of RVF vectors is shown in figure 4. The
highest abundance of RVF vectors during the rainy season
was in the lowland zone. During the dry season, there was a
shift in the abundance of mosquitoes, the highest count was
recorded in the riverine zone and not the lowland zone. The
midland zone had the lowest abundance of RVF vectors in
both seasons.

A) RVF Vector Abundace in the Rainy Seaon
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Fig 4: Abundance of RVF vectors across the geographic zones during the rainy and dry seasons. In both seasons, vector abundance is higher the
lowland and riverine zones compared to the highland and riverine zones. However, in the dry season, RVF vector abundance is highest in the
riverine zone compared to the rainy season. Note: the legends of Figures are not on the same scale, therefore comparisons should not be made

between the figures
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The abundance of malaria vectors is shown in figure 5. In
both seasons, malaria vectors were most abundant in the

http://www.dipterajournal.com

lowland zone, followed by the riverine zone. The highland
and mid-altitude zones had very few mosquitoes (Figure 5).

A) Malaria Vector Abundace in the Rainy Seaon
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Fig 5: Abundance of malaria vectors across the eco-geographical zones during the rainy and dry seasons. In both seasons, vector abundance is
high in the lowland and riverine zones compared to the highland and mid-altitude zone. However, as indicated by the legends, malaria vectors
are more abundant during the rainy season compared to the dry season. Note: the legends of Figures are not on the same scale, therefore
comparisons should not be made between the figures.

Discussion

Results from the study shows that the abundance of mosquito
vectors to the two diseases is climate sensitive, increasing the
risk of transmission during the rainy seasons. The study also
identifies the lowland and the riverine eco-geographic zones
as the possible focal points of RVF and malaria transmission.
This is supported by studies during the 2006-2007 RVF
outbreaks > & 2 and investigations into malaria incidence %
271 Intervention strategies on vector control against these two
diseases should be focus on the lowland and the riverine
ecogeographic zones.

The spatial distribution of RVF and malaria vectors is
restricted to the lowland and riverine eco-geographic zones.
These two zones possess a blend of climatic, vegetation, and
landscape factors that increase the abundance of vectors in the
form of permanent water bodies that serve as mosquito
breeding sites, dense vegetation and a stable climate
seasonality. Previuos studies reported the presence of flood-
prone soils with 90% flat topography in the lowland zone as
the most influential environmental predictors of RVF vector
occurrence in the lowland zone 81, a combination of climatic
and vegetation greenness threshold associated with malaria
transmission ? and a positive correlation between malaria
vectors abundance and rainfall in some parts of the study area
[30]

The temporal distribution of the vectors differed with more
mosquitoes being collected in the rainy season compared to
the dry season. This finding is supported by other studies that
have investigated seasonal trends of mosquito abundance 1%
30,31 The rainy season is comprised of the moths of April -
May, July - August, and November - December, implying and
increased risk of RVF and malaria transmission during these
months in the lowland and riverine zones.

Knowledge of the spatiotemporal distribution of RVF and
malaria vectors is crucial in implementing vector control as a
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disease prevention strategy. Vector control interventions can
target the lowland and riverine zones that have a high vector
abundance of mosquito vectors and it can be timed to coincide
with rainy seasons. Indeed, malaria cases in Baringo County
have been reported to increase with rainfall with a time lag of
2 months M, Malaria prevalence in the study area has been
reported as being highest in the riverine zone [,
Interventions like the supply of long-lasting insecticidal nets,
indoor residual spraying and larval source management in the
lowland and riverine zones can be timed to coincide with the
rainy season. The lowland zone has been the focal point of
previous interventions, has received malaria control
interventions thereby reducing malaria prevalence. Such
interventions should be extended to the riverine zone to
reduce the currently high malaria prevelance.

Inter-epidemic RVF surveillance in Baringo County has
reported a seroprevalence rate of 5.6% in ruminants 21 and no
detection of RVF seroprevalence in human populations [,
The main RVF intervention strategy has always been the
vaccination of animals and quarantines to control movement
of animals at the onset of outbreaks [*5l. However the cost of
the exercise is enormous, and with the functions of the
Ministry of Agriculture, Livestock and Fisheries being
devolved from the national to the county governments in the
new governance structure in Kenya 34, it is a challenge for
the county governments to implement.

Current mosquito vector control interventions are used against
malaria only. The use of an IVM approach can augment the
use of LLINs and IRS against malaria, and it can have the
benefit of reducing the abundance of mosquito vectors of
other diseases. IVM approaches can be extended to non
chemical methods such as house modification to reduce
mosquito access through the eaves of houses, use of attractive
sugar bait traps, use of mosquito repellants based on
indegenious knowledge on plants with mosquito repellent
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properties, and changes in sociocultural behaviour that
increase malaria risk can greatly reduce malaria transmission.
Since RVF outbreaks occur following the mass emergence of
transovarially infected Aedes mosquitoes, the best 1IVM
approach should be one that focuses on LSM using eco-
friendly larval growth inhibitors and microbial larvicides.
Trapping of adult stage mosquitoes using attractive sugar
baits can also augment the use of LSM. Aedes mosquitoes are
known to transmist other arboviruses that cause febrile
illnesses, for example, the Semliki Forest virus and
Chikungunya virus both of which are present in Baringo
County.

Through desigining VM protocols targeting mosquito vectors
of multiple diseases such as used in the “One Health”
approach, a single a single VM effort against a multidisease
vector is cost effective. The use of emerging vector control
methods like sterile insect technique in mosquitoes and the
CRISPR-cas9 gene editing technique in mosquito populations
also provide an opportunity that can be employed in the near
future to reduce the risk of RVF and malaria transmission.
The success of vector control against transmission of these
two diseases should also be guided by evidences from other
fields relevant to understanding the epidemiology of the two
diseases, for example, climate science, genetic epidemiology,
vector biology and medical anthropology. Respectively,
contributions from such fields will help in understanding
impact of climate change on IVM, track insecticide resistance
in vector populations, understand target points in the life
cycles of vectors where IVM is most effective and willingness
of local populations to take up innovative vector control
methods.

Conclusion

This paper presents evidence of spatiotemporal differences in
the distribution of RVF and malaria vectors attributable to
environmental and climatic variation. These spatiotemporal
differences in vector abundance and their correlation to
documented disease incidences identify two ecogeographic
zones as focal points for RVF and malaria transmission. The
findings can therefore be used to design 1VM strategies to
minimise the transmission of RVF and malaria in the two
ecogeographic zones of Baringo County.
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