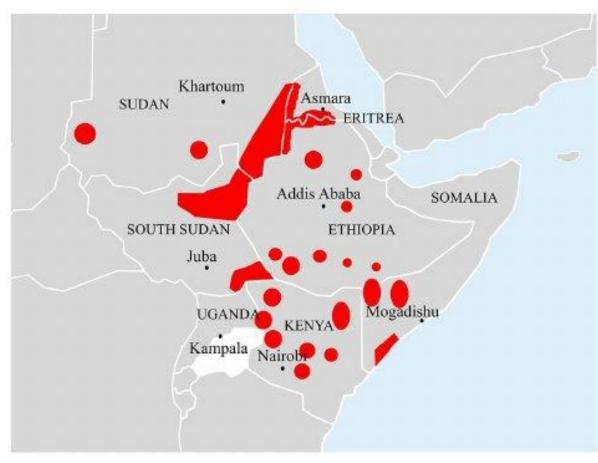
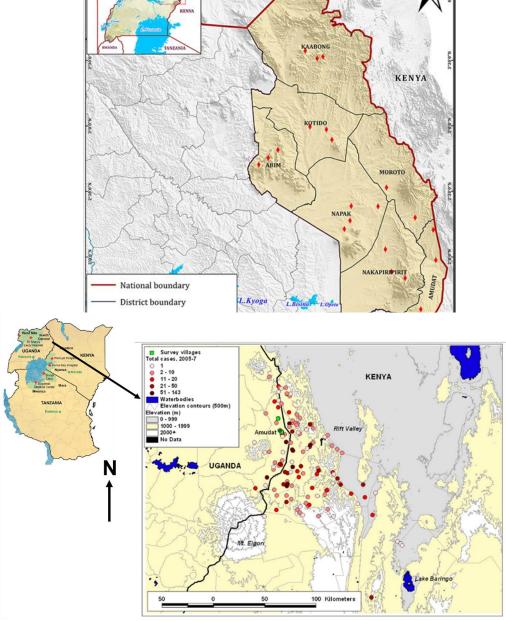


Strengthening Surveillance of Leishmaniasis in Uganda and Kenya through a Collaborative Multisectoral One Health Capacity Building Approach in Endemic foci.




Introduction

- Leishmaniasis, caused by a unicellular protozoan Leishmania spp. parasites
- Transmitted by the bite of infected female phlebotomine sandflies
- Annually, an estimated 700,000 to 1 million new cases are reported (WHO, 2023) in 79 countries.
- ❖East Africa region remains the most affected by VL, accounting for 72% of cases globally
- VL is endemic in Uganda, Kenya, Eritrea, Ethiopia, South Sudan, Sudan, and Somalia
- Uganda & Kenya still account for 15 % of the global cases

Introduction

- VL endemic in Karamoja region of Uganda, Pokot and Turkana region of Kenya. Cross border cases
- Target to eliminate visceral leishmaniasis as a public health problem by 2030 (WHO 2021-2030 neglected tropical disease road map)
- October 2023, VL endemic East African countries developed a strategic framework detailing strategy toward disease elimination
- Weak surveillance, reporting, low multisectoral engagement, & cross-border surveillance.

SOUTH SUDAN

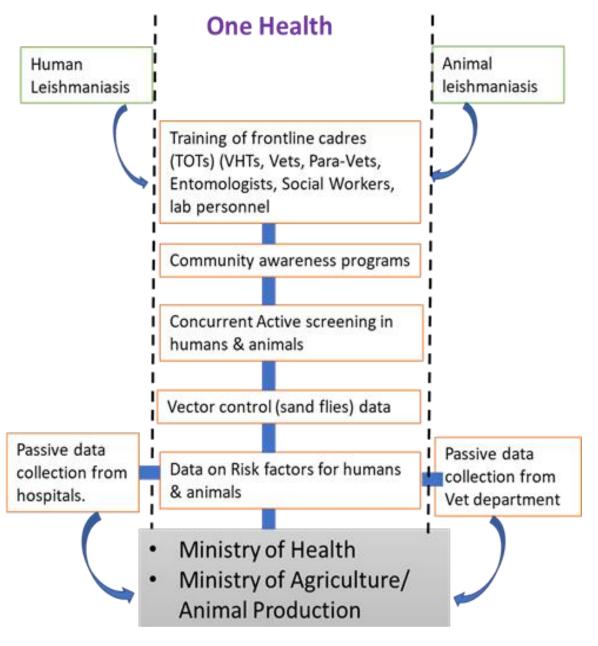
Figure 1: Mapping showing cross-border endemic foci in Uganda and Kenya recorded at Amudat hospital, Uganda, 2005-2007 (Malaria Consortium, 2010).

L

2

3

4


Build capacity of frontline workers in Uganda & Kenya to execute leishmaniasis surveillance & reporting through one health competencies.

Carry out a spatial & temporal mapping of leishmaniasis hotspots & decipher the risk factors associated with the disease within endemic foci.

Strengthen surveillance & reporting of leishmaniasis data within line ministries and across the border.

Strengthen multisectoral & cross border surveillance for enhanced reporting & knowledge sharing.

Methodology

 The project was launched on the 17th of February, 2023 at Makerere University

Community engagement

 Meeting with multidisciplinary stakeholders and political heads

(Moroto and Amudat)

 Visit to kala-azar treatment facilities (Moroto and Amudat hospitals)

Objectives

1

Build capacity of frontline workers in Uganda & Kenya to execute leishmaniasis surveillance & reporting through one health competencies.

A one health course on leishmaniasis (Frontline workers in Uganda and Kenya)

Table 1. Course structure

	Module		Notion
S/N	code	Module title	hours
1	OHL100	Introduction to One Health and Leishmaniasis	6
		Leishmaniasis surveillance, climate change and risk	
2	OHL101	factors	12
3	OHL102	One Health and Control of Leishmaniasis	10
4	OHL103	Stakeholder engagement and effective communication	6
		on disease control	
		Gender, risk analysis and control of leishmaniasis in	
5	OHL104	the One Health context	6

On health course on leishmaniasis training

- 26 Multidisciplinary participants from Uganda and Kenya
- Entomologists
- Veterinarians (paravets)
- Nurses/Medics
- Laboratory Technologists
- VHTS
- Social workers

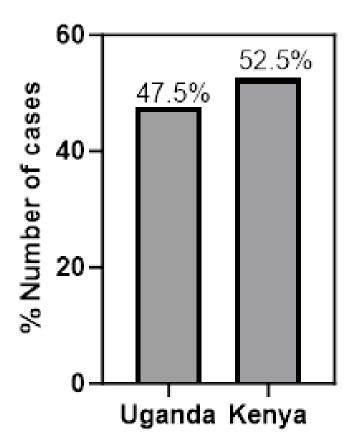
Objectives

2

Carry out a spatial & temporal mapping of leishmaniasis hotspots & decipher the risk factors associated with the disease within endemic foci.

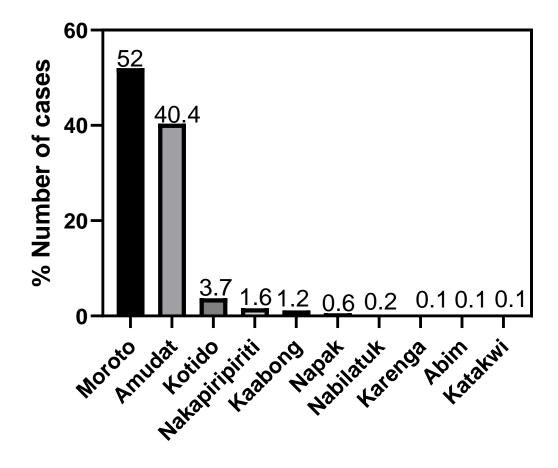
- 1. Digitalization of patient records
- 2. Trends of VL in Karamoja
- 3. Climate variability
- 4. Climate variability and VL trends
- 5. Risk factors for VL

Review of records on leishmaniasis cases Moroto and Amudat

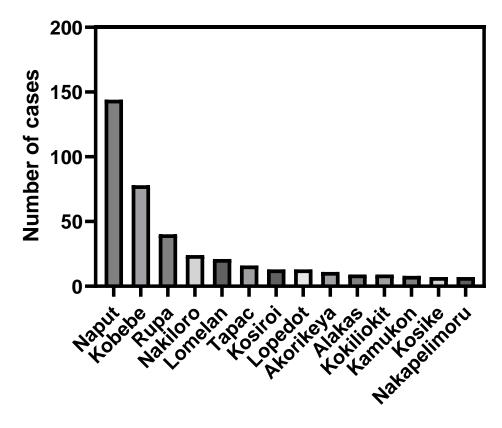

Captured data

	Nakapiri	pirit									
				Client category	Sex (Male/Fe		District of				
	Household Head	Chief's nar	Patient ID	(N.R.F)	male)	Age	Origin	County	Subcounty	Parish	Village
1	Loling sibiyano	Lorugeng	66/018	National	Female	55	Napak	Bokora Cou	Matany	Nakicumet	Kokeris
2		Loruka	49/018	National	Male	7	Nakapiripir	Chekwii Ea	Moruita	Komoret	Komoret
3	Ekemer	Lotita	70/017	National	Male	22	Nakapiripir	Chekwii Co	Loregae	Loregae	Lowoi
4	Tuber Noa	Loruka	46/018	National	Male	16	Nakapiripir	Chekwii Ea	Moruita	Moruita	Moruita
5	Pedo Saptos		94/020	National	Female	25	Nakapiripir	Chekwii Co	Loreng	Loreng	Loreng
6			108/021	National	Male	7					Naronit
	Napa	k									
				Client category	Sex (Male/Fe		District of				
	Household Head	Chief's nar	Patient ID	(N.R.F)	male)	Age	Origin	County	Subcounty	Parish	Village
1	Loling sibiyano	Lorugeng	66/018	National	Female	55	Napak	Bokora Cou	Matany	Nakicumet	Kokeris
2			108/021	National	Male	7					Naronit

Trends in Kala-azar cases

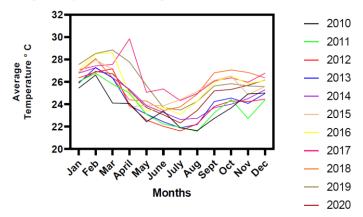


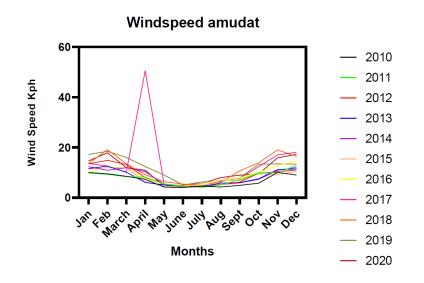
Cases increased with enhanced active case search



Uganda cases

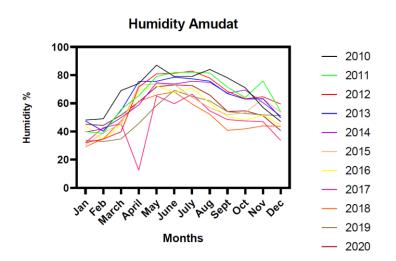
Cases per endemic district

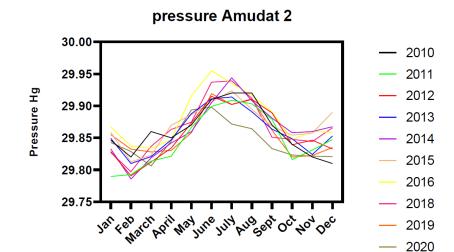



Cases per endemic village

Climate variability (2010-2020) in Karamoja

Average temperature changes from 2010 to 2020, Amudat

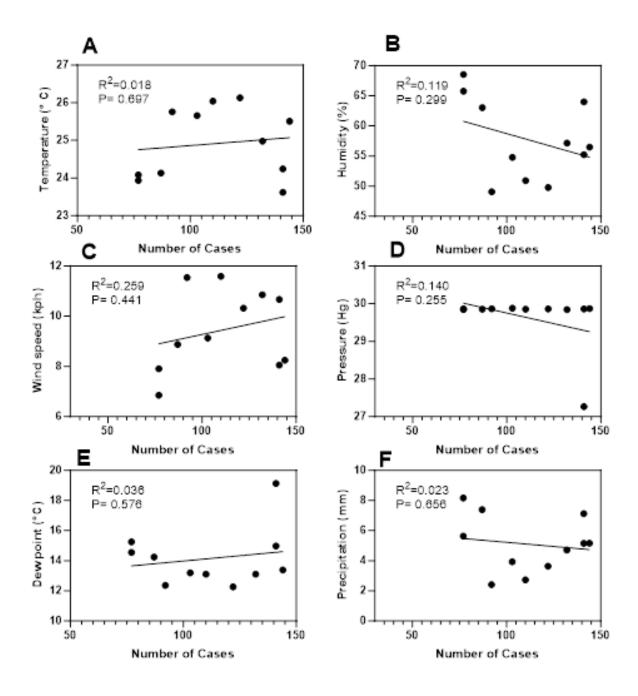




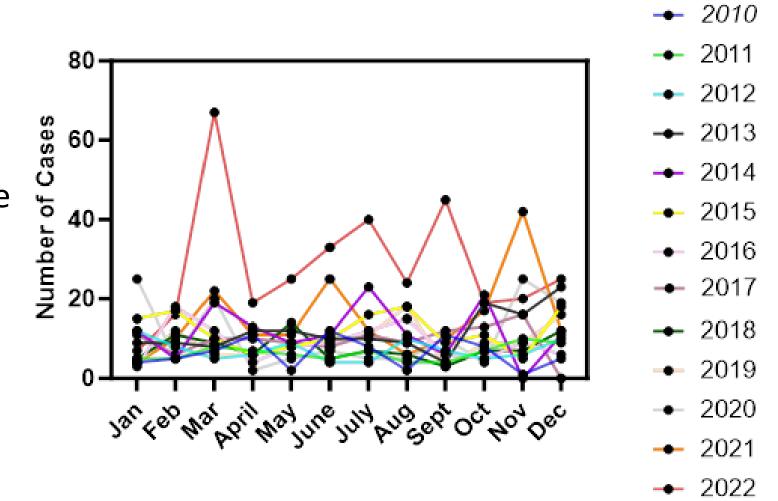
High temp: 2016, 2017, 2018,& 2019

Low temp: 2010, 2011,

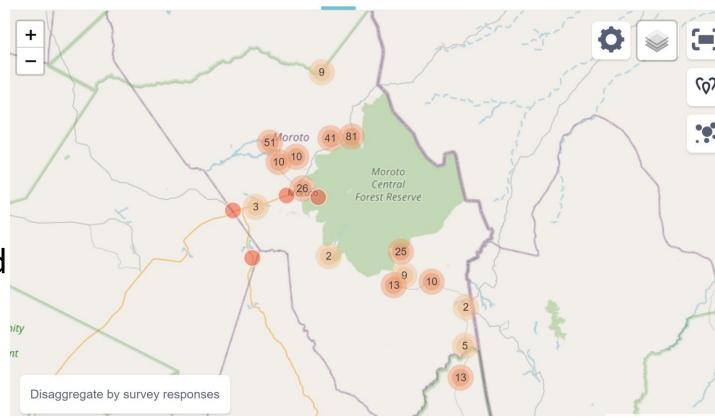
& 2012



Months


Climate variability and VL cases

- No observed relationship
- Number of cases still determined by active case search


Seasonality and VL cases

- Dry season Sept-March
- Wet season April-Aug
- No significant variation in case loads

Risk factors for persistence of VL

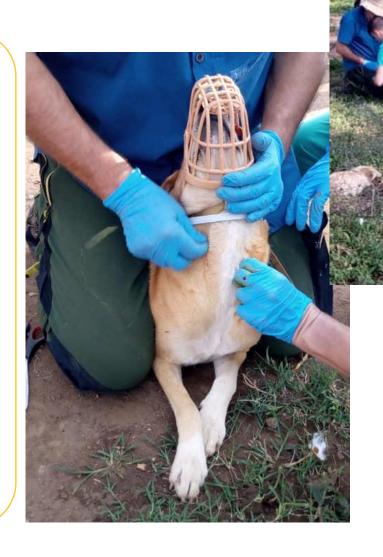
- ODK based data capture tool
- Villages reporting more than 50 cases between 2017-2022 (5 years)
- Villages that reported cases previously but have not reported since 2017-2022

Risk factor analysis for VL

- Young children more likely to get VL
- Large house holds are more protected
- House holds with livestock and poultry are protected
- Applying insecticides is protective
- Being knowledgeable about VL is protective

Variable	Bi-Variate Analysis cOR (95%CI), P-value	Multi-variate Analysis aOR (95%CI), P-value
Age in years	0.97(0.97-0.99), 0.01	0.95(0.93-0.98), 0.001
Marital status	, ,,	, ,,
Married	1	
Not Married	1.65(0.96-2.83), 0.07	
Education level, n(%)		
No Education	1	
Primary	0.81(038-1.72), 0.59	
Secondary	1.03(0.11-10.05), 0.98	
Household size, n(%)	1.00(0.11 10.00), 0.50	
<5 people	1	
6-10 people	0.84(0.49-1.45), 0.53	
11-15 people	0.39(0.14-1.11), 0.08	
16-20 people	0.24(0.06-0.95), 0.04	
Rear Animals	0.24(0.00-0.93), 0.04	
No No	1	
Yes	-	
	0.38(0.19-0.76), 0.006	
Have Dogs	1	
No	1	
Yes	1.33(0.74-2.41), 0.34	
Rear Livestock		
No	1	0.04/0.40.0.05\ 0.000
Yes	0.34(0.17-0.86), 0.02	0.34(0.13-0.85), 0.022
Rear Poultry		
No	1	
Yes	0.41(0.21-0.78), 0.007	0.40(0.17-0.95), 0.04
Apply Insecticide		
No	1	
Yes	0.33(0.20-0.55), < 0.001	
Knowledge on Kaalazar		
Symptoms		
No	1	
Yes	0.53(0.27-1.05), 0.068	
Knowledge on Kaalazar Transmission	· · · · · ·	
No	1	
Yes	0.38(0.22-0.62),	0.37(0.18-0.78), 0.009
	<0.001	
Farming activity		
No	1	

Risk factor analysis for VL


- Charcoal burning increases infection likelihood
- Eating more than 2 meals a day is protective
- Prescence of many termite molds increases infection rate

```
Charcoal burning
Activity
 No
 Yes
                        1.68(1.0-2.80), 0.049
                                                4.18(2.02-8.63), < 0.001
Mining Activity
 No
                        0.56(0.34-0.93), 0.025
 Yes
No of Rooms in
Household
 One room
                        0.40(0.23-0.69), 0.001
 >one Room
Meals had in a day
 I meal
                        1
                        0.47(0.26-0.84), 0.011 0.24(0.15-0.40), < 0.001
 2 meals
 3 meals
Sleeping Arrangement
 Sleeping outside
                        0.49(0.32-0.77), 0.002
 housing
Ground level sleeping
 Above the Ground
 Sleeping on ground
                        5.30(2.89-9.71),<0.001
Livestock shelter
distance from house
 <5meters
                        0.98(0.60-1.62), 0.94
 >5meters
Termite molds near
house
 No
                        0.47(0.27-0.82), 0.008
                                                0.37(0.17-0.79), 0.01
 Yes
No of termite Moulds
 < 3moulds
                        1.97(1.17-3.31), 0.01
 >3 moulds
Acacia tress near
house
 No
                        0.73(0.35-1.49), 0.38
 Yes
No of acacia tress
 <10 trees
                                                                      20
 >10 trees
                        1.18(0.71-1.97), 0.51
```

Objectives

3

Strengthen surveillance & reporting of leishmaniasis data within line ministries and across the border.

 Specimen collection from dogs and humans

Speciation and characterization

One health kala-azar seminar at Makerere University

Group photo for participants (left) and seminar session in progress (right).

Dr. Santiago Cerrato from LETI PHARMA, Spain training Makerere University Scientists on Leishmaniasis diagnosis.

Dog sample results

Moroto Municipality 2.5331936, 34.6582375 08/08/20223

N1H code	LETIPharma code	PCR amplicon	Age
Al36	CF-TDR-001M	Not detected.	А
Al37	CF-TDR-002M	Not detected.	Α
AI38	CF-TDR-003M	Not detected.	Α
Al39	CF-TDR-004M	Not detected.	Α
AI40	CF-TDR-005M	Not detected.	Α
Al41	CF-TDR-006M	Not detected.	А
Al42	CF-TDR-007M	Not detected.	А
AI43	CF-TDR-008M	Not detected.	Α
Al44	CF-TDR-009M	Not detected.	Α
AI45	CF-TDR-010M	Not detected.	Α
Al46	CF-TDR-011M	Not detected.	Р
AI47	CF-TDR-012M	Not detected.	А
Al48	CF-TDR-013M	Not detected.	Α
AI49	CF-TDR-014M	Not detected.	Α
AI50	CF-TDR-015M	Not detected.	Α
AI51	CF-TDR-016M	Not detected.	Α
Al52	CF-TDR-017M	Not detected.	Α
AI53	CF-TDR-018M	Not detected.	А

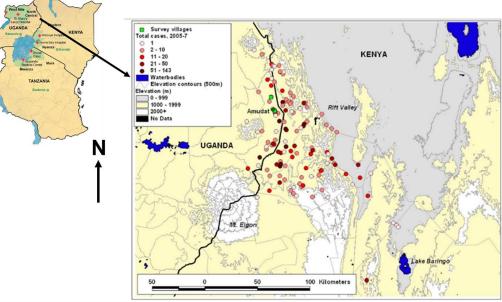
- Sample size of 139 too small
- Prescence of other reservoirs

Objectives

Sandfly trapping

3

Strengthen surveillance & reporting of leishmaniasis data within line ministries and across the border.



Objectives

4

Strengthen multisectoral & cross border surveillance for enhanced reporting & knowledge sharing.

 Cross border meetings between Uganda and Kenya.

Figure 1: Mapping showing cross-border endemic foci in Uganda and Kenya recorded at Amudat hospital, Uganda, 2005-2007 (Malaria Consortium, 2010).

Community dissemination workshop

- Multidisciplinary participants from Uganda and Kenya
- Representatives from local government, District Health Office, Entomology, hospital representation, Veterinary office, VHTs

Publications

- 1. Dogs as reservoirs for VL in East Africa
- 2. Visceral leishmaniasis and temperature variability in Karamoja
- 3. Risk factors for visceral leishmaniasis in Karamoja region
- 4. Clinical profiles, disease outcomes and commodities

Next steps

1. To map the spatial and temporal distribution of Visceral Leishmaniasis (VL) and Post kala-azar dermal leishmaniasis (PKDL) in endemic foci of Karamoja over fifteen years (2008-2023)

2. To investigate the socioeconomic and environmental factors for the persistence of Visceral Leishmaniasis within endemic foci of Karamoja.

Next steps

- 1. To identify the presence and characterize *Leishmania* species in dogs and wild rodents in visceral leishmaniasis endemic villages of Karamoja
- 2. To investigate the leishmania infectivity and host blood feeding preference for phlebotomine sandflies in VL endemic villages of Karamoja
- 3. To strengthen the surveillance of visceral leishmaniasis through the adaption of sustainable approaches
 - Integrating VL data into DHIS2 health reporting
 - Digital tracking of VL patients and update of distribution maps
 - Training of VL frontline workers

Thank you all for listening!

